What is Deep Learning? | IBM
If deep learning is a subset of machine learning, how do they differ? Deep learning distinguishes itself from classical machine learning by the type of data that it works with and the methods in which it learns.
Machine learning algorithms leverage structured, labeled data to make predictions—meaning that specific features are defined from the input data for the model and organized into tables. This doesn’t necessarily mean that it doesn’t use unstructured data; it just means that if it does, it generally goes through some pre-processing to organize it into a structured format.
Deep learning eliminates some of data pre-processing that is typically involved with machine learning. These algorithms can ingest and process unstructured data, like text and images, and it automates feature extraction, removing some of the dependency on human experts. For example, let’s say that we had a set of photos of different pets, and we wanted to categorize by “cat”, “dog”, “hamster”, et cetera. Deep learning algorithms can determine which features (e.g. ears) are most important to distinguish each animal from another. In machine learning, this hierarchy of features is established manually by a human expert.
Then, through the processes of gradient descent and backpropagation, the deep learning algorithm adjusts and fits itself for accuracy, allowing it to make predictions about a new photo of an animal with increased precision.
Machine learning and deep learning models are capable of different types of learning as well, which are usually categorized as supervised learning, unsupervised learning, and reinforcement learning. Supervised learning utilizes labeled datasets to categorize or make predictions; this requires some kind of human intervention to label input data correctly. In contrast, unsupervised learning doesn’t require labeled datasets, and instead, it detects patterns in the data, clustering them by any distinguishing characteristics. Reinforcement learning is a process in which a model learns to become more accurate for performing an action in an environment based on feedback in order to maximize the reward.
For a deeper dive on the nuanced differences between the different technologies, see “AI vs. Machine Learning vs. Deep Learning vs. Neural Networks: What’s the Difference?”
For a closer look at the specific differences between supervised and unsupervised learning, see “Supervised vs. Unsupervised Learning: What’s the Difference?”