Hyperparameter tuning of convolutional neural networks for building construction image classification | SpringerLink
-
Abbass, M., Kwon, K.-C., Kim, N., Abdelwahab, S., El-Samie, F., Khalaf, A.: Efficient object tracking using hierarchical convolutional features model and correlation filters. Vis. Comput. 37(4), 831–842 (2021)
-
Agrawal, A., Mittal, N.: Using cnn for facial expression recognition: a study of the effects of kernel size and number of filters on accuracy. Vis. Comput. 36(2), 405–412 (2020)
-
Aguiar, G.J., Mantovani, R.G., Mastelini, S.M., de Carvalho, A.C., Campos, G.F., Junior, S.B.: A meta-learning approach for selecting image segmentation algorithm. Pattern Recogn. Lett. 128, 480–487 (2019)
-
Bang, S., Park, S., Kim, H., Kim, H.: Encoder-decoder network for pixel-level road crack detection in black-box images. Comput. Aided Civil Infrast. Eng. 34(8), 713–727 (2019)
-
Bartlett, M.S.: Properties of sufficiency and statistical tests. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 160(901), 268–282 (1937)
-
Basgalupp, M.P., Barros, R.C., de Sá, A.G., Pappa, G.L., Mantovani, R.G., de Carvalho, A., Freitas, A. A.: An extensive experimental evaluation of automated machine learning methods for recommending classification algorithms. Evolut. Intell., pp 1–20. Article in Press (2020)
-
Bayoudh, K., Knani, R., Hamdaoui, F., Mtibaa, A.: A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets. Vis. Comput. pp. 1–32. Article in Press (2021)
-
Ben Fredj, H., Bouguezzi, S., Souani, C.: Face recognition in unconstrained environment with cnn. Vis. Comput. 37(2), 217–226 (2021)
-
Bhosle, K., Musande, V.: Evaluation of deep learning cnn model for land use land cover classification and crop identification using hyperspectral remote sensing images. J. Indian Soc. Remote Sens. 47(11), 1949–1958 (2019)
-
Braun, A., Borrmann, A.: Combining inverse photogrammetry and bim for automated labeling of construction site images for machine learning. Autom. Constr. 106, 1–12 (2019)
-
Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
-
Chen, S., Wu, J., Chen, X.: Deep reinforcement learning with model-based acceleration for hyperparameter optimization. November, 170–177 (2019)
-
Chen, Z., Hu, Z., Sheng, B., Li, P., Kim, J., Wu, E.: Simplified non-locally dense network for single-image dehazing. Vis. Comput. 36(10–12), 2189–2200 (2020)
-
Cheng, S., Lai, H., Wang, L., Qin, J.: A novel deep hashing method for fast image retrieval. Vis. Comput. 35(9), 1255–1266 (2019)
-
Chollet, F., Allaire, J.J.: Deep learning with R. Manning (2018). (Publications)
-
Conceição, J., Poça, B., De Brito, J., Flores-Colen, I., Castelo, A.: Inspection, diagnosis, and rehabilitation system for flat roofs. J. Perform. Constr. Facil. 31(6), 04017100 (2017)
-
Czerniawski, T., Leite, F.: Automated segmentation of rgb-d images into a comprehensive set of building components using deep learning. Adv. Eng. Inform. 45, 101131 (2020)
-
Duchi, J., Hazan, E., Singer, Y.: Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res. 12(7), 2121–2159 (2011)
-
Elgendy, M.: Deep learning for vision systems. Manning (2020). (Publications)
-
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F.: Efficient and robust automated machine learning. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in neural information processing systems 28, pp. 2962–2970. Curran Associates Inc (2015)
-
Garcez, N., Lopes, N., de Brito, J., Silvestre, J.: System of inspection, diagnosis and repair of external claddings of pitched roofs. Constr. Build. Mater. 35, 1034–1044 (2012)
-
Gökstorp, S.G.E., Breckon, T.P.: Temporal and non-temporal contextual saliency analysis for generalized wide-area search within unmanned aerial vehicle (uav) video. Vis. Comput. 1–8 (2021)
-
Gopalakrishnan, K., Khaitan, S.K., Choudhary, A., Agrawal, A.: Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection. Constr. Build. Mater. 157, 322–330 (2017)
-
Guo, J., Wang, Q., Li, Y.: Semi-supervised learning based on convolutional neural network and uncertainty filter for façade defects classification. Comput. Aided Civil Infrast. Eng. 36(3), 302–317 (2021)
-
Guo, J., Wang, Q., Li, Y., Liu, P.: Façade defects classification from imbalanced dataset using meta learning-based convolutional neural network. Comput. Aided Civil Infrast. Eng. 35(12), 1403–1418 (2020)
-
Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human activity recognition using wearables. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 1533–1540
-
Hertel, L., Collado, J., Sadowski, P., Ott, J., Baldi, P.: Sherpa: Robust hyperparameter optimization for machine learning. SoftwareX 12, 100591 (2020)
-
Hijam, D., Saharia, S.: On developing complete character set meitei mayek handwritten character database. Vis. Comput. pp. 1–15. Article in Press (2021)
-
Hu, Y.-Q., Yu, Y.: A technical view on neural architecture search. Int. J. Mach. Learn. Cybern. 11(4), 795–811 (2020)
-
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269 (2017)
-
Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: Proceedings of International Conference on Machine Learning 2014 (ICML 2014), pp. 754–762 (2014)
-
Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning: Methods. Springer. In press, available, Systems, Challenges (2019). http://automl.org/book
-
Jaafra, Y., Laurent, J.L., Deruyver, A., Naceur, M.S.: Reinforcement learning for neural architecture search: a review. Image Vis. Comput. 89, 57–66 (2019)
-
Jelihovschi, E.G., Faria, J.C., Allaman, I.B.: Scottknott: a package for performing the scott-knott clustering algorithm in r. TEMA – SBMAC 15(1), 3–17 (2014)
-
Kim, B., Yuvaraj, N., Preethaa, K.S., Pandian, R.A.: Surface crack detection using deep learning with shallow cnn architecture for enhanced computation. Neural Comput. Appl. 33(15), 9289–9305 (2021)
-
Kingma, D. P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprintarXiv:1412.6980 (2014)
-
Kouzehgar, M., Tamilselvam, Y.K., Heredia, M.V., Elara, M.R.: Self-reconfigurable façade-cleaning robot equipped with deep-learning-based crack detection based on convolutional neural networks. Autom. Constr. 108, 102959 (2019)
-
Lakshmi, L., Reddy, M., Santhaiah, C., Reddy, U.: Smart phishing detection in web pages using supervised deep learning classification and optimization technique adam. Wireless Pers. Commun. 118(4), 3549–3564 (2021)
-
Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
-
Li, K., Jin, Y., Akram, M.W., Han, R., Chen, J.: Facial expression recognition with convolutional neural networks via a new face cropping and rotation strategy. Vis. Comput. 36(2), 391–404 (2020)
-
Li, S., Zhao, X.: Image-based concrete crack detection using convolutional neural network and exhaustive search technique. Adv. Civil Eng. 2019,(2019)
-
Li, X., He, M., Li, H., Shen, H.: A combined loss-based multiscale fully convolutional network for high-resolution remote sensing image change detection. IEEE Geosci. Remote Sens. Lett. 1–5 (2021)
-
Litjens, G., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoorian, M., van der Laak, J.A., van Ginneken, B., Sánchez, C.I.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
-
Liu, C., Ying, J., Yang, H., Hu, X., Liu, J.: Improved human action recognition approach based on two-stream convolutional neural network model. Vis. Comput. 37(6), 1327–1341 (2021)
-
Mantovani, R.G., Horváth, T., Cerri, R., Vanschoren, J., de Carvalho, A.C.: Hyper-parameter tuning of a decision tree induction algorithm. In: 5th Brazilian Conference on Intelligent Systems (BRACIS), pp. 37–42 (2016)
-
Mantovani, R.G., Rossi, A.L., Alcobaça, E., Vanschoren, J., de Carvalho, A.C.: A meta-learning recommender system for hyperparameter tuning: Predicting when tuning improves svm classifiers. Inf. Sci. 501, 193–221 (2019)
-
Monshi, M.M.A., Poon, J., Chung, V., Monshi, F.M.: Covidxraynet: Optimizing data augmentation and cnn hyperparameters for improved covid-19 detection from cxr. Comput. Biol. Med. 133, 104375 (2021)
-
Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2017)
-
Nahhas, F., Shafri, H., Sameen, M., Pradhan, B., Mansor, S.: Deep learning approach for building detection using lidar-orthophoto fusion. J. Sens. 2018 (2018)
-
Ni, X., Li, C., Jiang, H., Takeda, F.: Deep learning image segmentation and extraction of blueberry fruit traits associated with harvestability and yield. Hortic. Res. 7(1), 1–14 (2020)
-
Ottoni, A.L., Nepomuceno, E.G., de Oliveira, M.S., de Oliveira, D.C.: Reinforcement learning for the traveling salesman problem with refueling. Complex Intell. Syst. 1–15 (2021)
-
Ottoni, A.L.C., Nepomuceno, E.G., de Oliveira, M.S.: A response surface model approach to parameter estimation of reinforcement learning for the travelling salesman problem. J. Control Autom. Electr. Syst. 29(3), 350–359 (2018)
-
Ottoni, A.L.C., Nepomuceno, E.G., de Oliveira, M.S., de Oliveira, D.C.R.: Tuning of reinforcement learning parameters applied to sop using the scott-knott method. Soft. Comput. 24, 4441–4453 (2020)
-
Ottoni, A.L.C., Novo, M.S.: A deep learning approach to vegetation images recognition in buildings: a hyperparameter tuning case study. IEEE Lat. Am. Trans. 19(12), 2062–2070 (2021)
-
Pirotti, F., Zanchetta, C., Previtali, M., Della Torre, S.: Detection of building roofs and facades from aerial laser scanning data using deep learning. In: 2nd International Conference of Geomatics and Restoration, GEORES 2019, volume 42, pp. 975–980. Copernicus GmbH (2019)
-
Postalcıoğlu, S.: Performance analysis of different optimizers for deep learning-based image recognition. Int. J. Pattern Recognit. Artif. Intell. 34(02), 1–12 (2020)
-
R Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2020)
-
Rangarajan, A.K., Purushothaman, R., Ramesh, A.: Tomato crop disease classification using pre-trained deep learning algorithm. Procedia Comput. Sci. 133, 1040–1047 (2018)
-
Razali, N.M., Wah, Y.B., et al.: Power comparisons of Shapiro–Wilk, Kolmogorov–Smirnov, Lilliefors and Anderson-darling tests. J. Stat. Model. Anal. 2(1), 21–33 (2011)
-
Russell, S.J., Norving, P.: Artificial Intelligence. Campus, 3rd edn. (2013)
-
Scott, A.J., Knott, M.: A cluster analysis method for grouping means in the analysis of variance. Biometrics 30(3), 507–512 (1974)
-
Shorten, C., Khoshgoftaar, T.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 1–14 (2019)
-
Silva, I.N., Spatti, D.H., Flauzino, R.A.: Artificial neural networks for engineering and applied sciences: theoretical foundations and practical aspects (in portuguese). ArtLiber (2016)
-
Silveira, B., Melo, R., Costa, D. B.: Using uas for roofs structure inspections at post-occupational residential buildings. In: Toledo Santos, E., Scheer, S. (eds.) Proceedings of the 18th International Conference on Computing in Civil and Building Engineering, pp. 1055–1068, Cham. Springer International Publishing (2021)
-
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015–Conference Track Proceedings. (2015)
-
Singh, R., Goel, A., Raghuvanshi, D.: Computer-aided diagnostic network for brain tumor classification employing modulated gabor filter banks. Vis. Comput. 37(8), 2157–2171 (2021)
-
Staffa, L. B., Sá, L. S. V., Lima, M. I. S. C., Costa, D. B.: Use of image processing techniques for inspection of building roof structures for technical assistance purposes (in portuguese). ENTAC – National Meeting of the Built Environment Technology (2020)
-
Strohm, H., Rothlübbers, S., Eickel, K., Günther, M.: Deep learning-based reconstruction of ultrasound images from raw channel data. Int. J. Comput. Assist. Radiol. Surg. 15(9), 1487–1490 (2020)
-
Sudre, C., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. volume 10553 LNCS, pp. 240–248 (2017)
-
Tripathi, G., Singh, K., Vishwakarma, D.: Convolutional neural networks for crowd behaviour analysis: a survey. Vis. Comput. 35(5), 753–776 (2019)
-
Uçkun, F.A., Özer, H., Nurbaş, E., Onat, E.: Direction finding using convolutional neural networks and convolutional recurrent neural networks. In: 2020 28th Signal Processing and Communications Applications Conference (SIU), pp. 1–4 (2020)
-
Wadhawan, A., Kumar, P.: Deep learning-based sign language recognition system for static signs. Neural Comput. Appl. 32(12), 7957–7968 (2020)
-
Wang, W., Hu, Y., Luo, Y., Zhang, T.: Brief survey of single image super-resolution reconstruction based on deep learning approaches. Sens. Imaging 21(1), 1–20 (2020)
-
Yadav, O., Passi, K., Jain, C.K.: Using deep learning to classify x-ray images of potential tuberculosis patients. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2368–2375. IEEE
-
Yang, H., Min, K.: Classification of basic artistic media based on a deep convolutional approach. Vis. Comput. 36(3), 559–578 (2020)
-
Yang, M., Ma, T., Tian, Q., Tian, Y., Al-Dhelaan, A., Al-Dhelaan, M.: Aggregated squeeze-and-excitation transformations for densely connected convolutional networks. Vis. Comput. 1–14 (2021)
-
Younis, M.C., Keedwell, E.: Semantic segmentation on small datasets of satellite images using convolutional neural networks. J. Appl. Remote Sens. 13(4), 046510 (2019)
-
Zhang, S., He, F.: Drcdn: learning deep residual convolutional dehazing networks. Vis. Comput. 36(9), 1797–1808 (2020)
-
Zhou, S., Song, W.: Deep learning-based roadway crack classification using laser-scanned range images: A comparative study on hyperparameter selection. Autom. Constr. 114, 1–17 (2020)
-
Ünlü, R., Kiriş, R.: Detection of damaged buildings after an earthquake with convolutional neural networks in conjunction with image segmentation. Vis. Comput. 1–10 (2021)