Finding a Kakuro trick
$\begingroup$
In the bottom right corner, in the 6-clue pointing right, you know:
The leftmost square cannot be a 1, since this would force both the bottom squares in the 3 and 4 clues to its right to be a 1.
This forces:
The square diagonally above the 6-clue to be a 1. Then, the 12-clue in this column must be 1245, since there is no longer a place for the 6 to go. This lets you fill out the column like so:
The bottom right corner falls to easy deductions:
Next:
Look at the 14-clue down in the middle of the puzzle. We now have a 3&5 in the column, so there cannot be a 6 in the top cell. This forces the crossing 12-clue to be 1245, and thus the cell directly under the 14-clue is 4. With some easy consequential fill-ins:
Finishing up:
In the 15-clue down in the fifth column, the remaining two clues need to sum to 10, which force them to be 8 and 2. The rest is just fill-ins.