Electrical and Electronics Engineers : Occupational Outlook Handbook: : U.S. Bureau of Labor Statistics

How to Become an Electrical or Electronics Engineer

About this section
Electrical and electronics engineers

Becoming an electrical or electronics engineer involves the study of math and engineering.

Electrical and electronics engineers must have a bachelor’s degree. Employers also value practical experience, such as internships or participation in cooperative engineering programs, in which students earn academic credit for structured work experience.

Education

High school students interested in studying electrical or electronics engineering benefit from taking courses in physics and math, including algebra, trigonometry, and calculus. Courses in drafting are also helpful, because electrical and electronics engineers often are required to prepare technical drawings.

Electrical and electronics engineers typically need a bachelor’s degree in electrical engineering, electronics engineering, or a related engineering field. Programs include classroom, laboratory, and field studies. Courses include digital systems design, differential equations, and electrical circuit theory. Programs in electrical engineering, electronics engineering, or electrical engineering technology should be accredited by ABET.

Some colleges and universities offer cooperative programs in which students gain practical experience while completing their education. Cooperative programs combine classroom study with practical work. Internships provide similar experience and are growing in number.

At some universities, students can enroll in a 5-year program that leads to both a bachelor’s degree and a master’s degree. A graduate degree allows an engineer to work as an instructor at some universities, or in research and development.

Important Qualities

Concentration. Electrical and electronics engineers design and develop complex electrical systems and electronic components and products. They must keep track of multiple design elements and technical characteristics when performing these tasks.

Initiative. Electrical and electronics engineers must apply their knowledge to new tasks in every project they undertake. In addition, they must engage in continuing education to keep up with changes in technology.

Interpersonal skills. Electrical and electronics engineers must work with others during the manufacturing process to ensure that their plans are implemented correctly. This collaboration includes monitoring technicians and devising remedies to problems as they arise.

Math skills. Electrical and electronics engineers must use the principles of calculus and other advanced math in order to analyze, design, and troubleshoot equipment.

Speaking skills. Electrical and electronics engineers work closely with other engineers and technicians. They must be able to explain their designs and reasoning clearly and to relay instructions during product development and production. They also may need to explain complex issues to customers who have little or no technical expertise.

Writing skills. Electrical and electronics engineers develop technical publications related to equipment they develop, including maintenance manuals, operation manuals, parts lists, product proposals, and design methods documents.

Licenses, Certifications, and Registrations

Licensure is not required for entry-level positions as electrical and electronics engineers. A Professional Engineering (PE) license, which allows for higher levels of leadership and independence, can be acquired later in one’s career. Licensed engineers are called professional engineers (PEs). A PE can oversee the work of other engineers, sign off on projects, and provide services directly to the public. State licensure generally requires

  • A degree from an ABET-accredited engineering program
  • A passing score on the Fundamentals of Engineering (FE) exam
  • Relevant work experience, typically at least 4 years
  • A passing score on the Professional Engineering (PE) exam

The initial FE exam can be taken after earning a bachelor’s degree. Engineers who pass this exam commonly are called engineers in training (EITs) or engineer interns (EIs). After meeting work experience requirements, EITs and EIs can take the second exam, called the Principles and Practice of Engineering (PE).

Each state issues its own licenses. Most states recognize licensure from other states, as long as the licensing state’s requirements meet or exceed their own licensure requirements. Several states require continuing education for engineers to keep their licenses.

Advancement

Electrical and electronic engineers may advance to supervisory positions in which they lead a team of engineers and technicians. Some may move to management positions, working as engineering or program managers. Preparation for managerial positions usually requires working under the guidance of a more experienced engineer. For more information, see the profile on architectural and engineering managers.

For sales work, an engineering background enables engineers to discuss a product’s technical aspects and assist in product planning and use. For more information, see the profile on sales engineers.