Bài tập vật lý lớp 10 chuyển động thẳng đều, vận tốc trung bình

Bài tập chuyển động thẳng đều, các dạng bài tập chuyển động thẳng đều, phương pháp giải các bài tập chuyển động thẳng đều, vật lý phổ thông lớp 10 chương trình cơ bản, nâng cao.
Video: bài tập vật lý lớp 10 tính vận tốc trung bình

Bài tập 1: Chất điểm chuyển động trên đường thẳng, vật xuất phát từ gốc tọa độ chuyển động theo chiều dương, tại các thời điểm khác nhau vật có vị trí tọa độ như bảng dưới:
33907123115_216b5498fe_o.jpg

a/ Chứng minh vật chuyển động thẳng đều
b/ Viết phương trình tọa độ chuyển động của vật, vẽ đồ thị chuyển động của vật

c/ Tính quãng đường vật đi được trong 20 giây
d/ Tính quãng đường vật đi được trong giây thứ 20.

1 = t1 – to = 1 – 0 = 1 (s); Δx1 = x1 – xo = 2,5 – 0 =2,5 (m)
Δt2 = t2 – t1 = 2 – 1 = 1 (s); Δx2 = x2 – x1 = 5 – 2,5 =2,5 (m)
Δt3 = t3 – t2 = 3 – 2 = 1 (s); Δx3 = x3 – x2 = 7,5 – 5 =2,5 (m)
Δt4 = t4 – t3 = 4 – 3 = 1 (s); Δx4 = x4 – x3 = 10 – 7,5 =2,5 (m)
=> Trong những khoảng thời gian bằng nhau Δt$_{1 }$= Δt2 = Δt$_{3 }$=Δt4 = 1 (s) chất điểm chuyển động được những quãng đường bằng nhau Δx1 = Δx2 = Δx3 = Δx4 = 2,5m => chất điểm chuyển động thẳng đều.
b/ vận tốc \[v=\dfrac{\Delta x_{1}}{\Delta t_{1}}\] = 2,5 (m/s)
tại thời điểm ban đầu to = 0; xo = 0
phương trình chuyển động x = xo + v.t = 2,5t
33866296566_76680986ab_o.png{33866296566_76680986ab_o.png}

c/ s = v.t = 2,5.20 = 50 (m)
d/ quãng đường vật đi được trong giây thứ 20 = quãng đường vật đi được trong 21 giây – quãng đường vật đi được trong 20giây
s$_{20}$ = v.t$_{21}$ – v.t$_{20}$ = 2,5.21 – 2,5.20 = 2,5m
Chú ý: phân biệt rõ khái niệm
20 giây: thời gian trôi được 20giây;
giây thứ 20: thời gian trôi là 1 giây và giây đó nằm ở thứ tự 20
Một ví dụ khác để dễ hình dung: có 20 học sinh trong lớp học (20 người) và em là người đứng vị trí thứ 20 trong lớp học (1 người)

a/ Δt= t- t= 1 – 0 = 1 (s); Δx= x- x= 2,5 – 0 =2,5 (m)Δt= t- t= 2 – 1 = 1 (s); Δx= x- x= 5 – 2,5 =2,5 (m)Δt= t- t= 3 – 2 = 1 (s); Δx= x- x= 7,5 – 5 =2,5 (m)Δt= t- t= 4 – 3 = 1 (s); Δx= x- x= 10 – 7,5 =2,5 (m)=> Trong những khoảng thời gian bằng nhau Δt$_{1 }$= Δt= Δt$_{3 }$=Δt= 1 (s) chất điểm chuyển động được những quãng đường bằng nhau Δx= Δx= Δx= Δx= 2,5m => chất điểm chuyển động thẳng đều.b/ vận tốc \[v=\dfrac{\Delta x_{1}}{\Delta t_{1}}\] = 2,5 (m/s)tại thời điểm ban đầu t= 0; x= 0phương trình chuyển động x = x+ v.t = 2,5tc/ s = v.t = 2,5.20 = 50 (m)d/ quãng đường vật đi được trong giây thứ 20 = quãng đường vật đi được trong 21 giây – quãng đường vật đi được trong 20giâys$_{20}$ = v.t$_{21}$ – v.t$_{20}$ = 2,5.21 – 2,5.20 = 2,5mChú ý: phân biệt rõ khái niệm20 giây: thời gian trôi được 20giây;giây thứ 20: thời gian trôi là 1 giây và giây đó nằm ở thứ tự 20Một ví dụ khác để dễ hình dung: có 20 học sinh trong lớp học (20 người) và em là người đứng vị trí thứ 20 trong lớp học (1 người)

Bài tập 2: Một chất điểm chuyển động thẳng đều có đồ thị tọa độ thời gian như hình vẽ. Viết phương trình chuyển động của vật và mô tả lại chuyển động của vật theo đồ thị. Sau bao lâu vật đi hết quãng đường.
33522217560_717b674a9c_o.png

Phương trình chuyển động của vật: x = xo + v.t
Tại thời điểm to = 0; x = 100km => 80 = xo + v.0 => xo = 100 (km)
Tại thời điểm t1 = 1h; x = 80km => 80 = 100 + v.1 => v = -20 (km/h)
=> phương trình chuyển động của vật: x = 100 – 20t (km)
Mô tả chuyển động của vật: Một vật chuyển động thẳng đều với vận tốc 20 (km/h) ngược chiều dương từ một điểm cách gốc tọa độ 100km.
Thời gian vật đi hết quãng đường 100km: \[t=\dfrac{s}{v}\] = 100/20 = 5 (h)

Video phương pháp giải bài tập viết phương trình chuyển động thẳng đều

Bài tập 3: Một xe máy chuyển động thẳng từ A đến B hết 30 phút. Trong 10 phút đầu, xe máy chuyển động với vận tốc 36km/h, trong 10 phút tiếp theo chuyển động với vận tốc 8m/s, trong 10 phút sau cùng chuyển động với vận tốc 18km/h. Tính:
a) Chiều dài đoạn đường AB.
b) vận tốc trung bình trên đoạn đường AB.

a/ t1 = 10phút = 600 (s); v1 = 36km/h = 10m/s => s1 = v1.t1 = 6000 (m)
t2 = 600 (s); v2 = 8m/s => s2 = v2.t2 = 4800 (m)
t3 = 600 (s); v3 = 18km/h = 5m/s => s3 = v3.t3 = 3000 (m)
=> AB = s1 + s2 + s3 = 13800 (m) = 13,8 (km)
b/ \[v_{tb}=\dfrac{s_{1}+s_{2}+s_{3}}{t_{1}+t_{2}+t_{3}}\] = 7,67 (m/s)

Bài tập 4: Lúc 7h một ô tô chuyển động từ A đến B với vận tốc 80km/h. Cùng lúc, một ô tô chuyển động từ B về A với vận tốc 80km/h. Biết khoảng cách từ A đến B là 200km coi chuyển động của hai ô tô là chuyển động thẳng đều.
a/ viết phương trình chuyển động của 2 ô tô.
b/ xác định vị trí và thời điểm 2 xe gặp nhau.
c/ Vẽ đồ thị chuyển động của hai xe
33907136435_fd481a1018_o.png{33907136435_fd481a1018_o.png}

Chọn chiều dương là chiều từ A đến B, gốc thời gian là lúc 7h; gốc tọa độ tại điểm A
Phương trình chuyển động của 2 ô tô
x1 = x$_{01}$ + 80.t
x2 = x$_{02}$ – 80.t
a/ Tại thời điểm to = 0 (lúc đồng hồ chỉ 7h)
ô tô 1 đang ở A => x$_{01}$ = 0 => x$_{01}$ = 0 => x1 = 80t (km)
ô tô 2 đang ở B (cách A 200km) => x$_{02}$ = 100 => x2 = 200 – 80t (km)
b/ Hai xe gặp nhau => x1 = x2 => 80t = 200 – 80t => t = 1,25 (h)
=> x1 = 80.t = 80.1,25 = 100 (km)
=> hai xe gặp nhau sau 1,25h ( lúc 8,25h) chuyển động và tại vị trí cách điểm A 100km => cách điểm B (200 – 100 = 100km)
c/
wuUzFMH.jpg{wuUzFMH.jpg}

Chọn chiều dương là chiều từ A đến B, gốc thời gian là lúc 7h; gốc tọa độ tại điểm APhương trình chuyển động của 2 ô tô= x$_{01}$ + 80.t= x$_{02}$ – 80.ta/ Tại thời điểm t= 0 (lúc đồng hồ chỉ 7h)ô tô 1 đang ở A => x$_{01}$ = 0 => x$_{01}$ = 0 => x= 80t (km)ô tô 2 đang ở B (cách A 200km) => x$_{02}$ = 100 => x= 200 – 80t (km)b/ Hai xe gặp nhau => x= x=> 80t = 200 – 80t => t = 1,25 (h)=> x= 80.t = 80.1,25 = 100 (km)=> hai xe gặp nhau sau 1,25h ( lúc 8,25h) chuyển động và tại vị trí cách điểm A 100km => cách điểm B (200 – 100 = 100km)c/

Bài tập 5: Một ô tô chuyển động thẳng đều từ A đến B với vận tốc 90km/h, Sau 15 phút từ B một xe máy chuyển động về A với vận tốc 40km/h. Sau khi đến B ô tô dừng lại nghỉ 30 phút rồi chuyển động thẳng đều quay trở lại A và gặp xe máy lần 2 ở điểm cách A là 25km (chưa đến A). Tính độ dài của quãng đường AB.
33094277313_8a7f9a7c04_o.png{33094277313_8a7f9a7c04_o.png}

15phút = 0,25h; 30phút = 0,5h
chọn gốc thời gian là lúc xe máy bắt đầu đi, chiều dương A → B, gốc tại A
Tọa độ gặp nhau lần thứ 2 của xe máy: x2 = AB – 40t = 25 => t = (AB – 25)/40 (1)
xe máy suất phát sau ô tô 15 phút, ô tô nghỉ 30 phút => trong quãng thời gian chuyển động của xe máy
ô tô xuất phát chậm hơn 15 phút = 0,25h
Tọa độ gặp nhau lần thứ 2 của ô tô: x$_{1 }$ = 2AB – 90(t – 0,25) = 25 (2)
Từ (1) và (2) => AB = 215km

15phút = 0,25h; 30phút = 0,5hchọn gốc thời gian là lúc xe máy bắt đầu đi, chiều dương A → B, gốc tại ATọa độ gặp nhau lần thứ 2 của xe máy: x= AB – 40t = 25 => t = (AB – 25)/40 (1)xe máy suất phát sau ô tô 15 phút, ô tô nghỉ 30 phút => trong quãng thời gian chuyển động của xe máyô tô xuất phát chậm hơn 15 phút = 0,25hTọa độ gặp nhau lần thứ 2 của ô tô: x$_{1 }$ = 2AB – 90(t – 0,25) = 25 (2)Từ (1) và (2) => AB = 215km

Bài tập 6: Lúc 5h một người đi bộ chuyển động thẳng đều từ A đến B. Sau đó 2h một người đi xe đạp chuyển động thẳng đều từ A đến B, người đi xe đạp gặp người đi bộ lần thứ nhất lúc 8h. Biết quãng đường AB dài 24km. Người đi xe đạp tới B rồi quay lại A và gặp người đi bộ lần thứ 2 lúc 9h30ph. Hỏi vận tốc của mỗi người là bao nhiêu.
2016-03-28_081023.jpg{2016-03-28_081023.jpg}

Chọn gốc thời gian là lúc 7h, chiều dương từ A→B, gốc tại A
gọi v1: vận tốc người đi bộ, v2: vận tốc người đi xe đạp; 9h30ph = 9,5h
=> phương trình chuyển động của người đi bộ và đi xe đạp khi gặp nhau lần thứ nhất
x1 = v1(t1 + 2); x2 = v2t1
thời gian hai vật gặp nhau lần thứ nhất: x1= x2=> v1(t1 + 2) = v2t1
=> t1 = \[\dfrac{2v_1}{v_2-v_1}\] = 8h – 7h = 1 (h) => v1 = v2/3 (1)
tọa độ gặp nhau lần thứ nhất: x1 = v1(t1 + 2) = 3v1
tọa độ của người đi bộ sau lần gặp thứ 2: x1′ = v1(t1′ + 2)= v1(9,5 – 7 + 2) = 4,5v1
tọa độ của người đi xe đạp lúc gặp nhau lần 2: x’2 = 2AB – v2(9,5 – 7)
hai vật gặp nhau => x1′ = x2′ => 4,5v1 = 48 – 2,5v2 (2)
từ (1) và (2) => v1 = 4km/h; v2 = 12km/h

Chọn gốc thời gian là lúc 7h, chiều dương từ A→B, gốc tại Agọi v: vận tốc người đi bộ, v: vận tốc người đi xe đạp; 9h30ph = 9,5h=> phương trình chuyển động của người đi bộ và đi xe đạp khi gặp nhau lần thứ nhất= v(t+ 2); x= vthời gian hai vật gặp nhau lần thứ nhất: x= x=> v(t+ 2) = v=> t= \[\dfrac{2v_1}{v_2-v_1}\] = 8h – 7h = 1 (h) => v= v/3 (1)tọa độ gặp nhau lần thứ nhất: x= v(t+ 2) = 3vtọa độ của người đi bộ sau lần gặp thứ 2: x’ = v(t’ + 2)= v(9,5 – 7 + 2) = 4,5vtọa độ của người đi xe đạp lúc gặp nhau lần 2: x’= 2AB – v(9,5 – 7)hai vật gặp nhau => x’ = x’ => 4,5v= 48 – 2,5v(2)từ (1) và (2) => v= 4km/h; v= 12km/h

Bài tập 7: Khoảng cách từ nhà đến trường là 12km. Tan trường bố đi đón con, cùng với một con chó. Vận tốc của con là v$_{1 }$= 2km/h, vận tốc của bố là v2 = 4km/h. Vận tốc của con chó thay đổi như sau: Lúc chạy lại gặp con với vận tốc v3 = 8km/h, sau khi gặp đứa con thì quay lại chạy gặp bố với vận tốc v4 = 12km/h, rồi lại tiềp tục quá trình trên cho đến khi hai bố con gặp nhau.Hỏi khi hai bố con gặp nhau thì con chó đã chạy được quãng đường là bao nhiêu ?

Gọi t là khoảng thời gian từ lúc hai bố con bắt đầu đi đến khi gặp nhau
=> v1.t + v2.t = s => Thời gian hai bố con gặp nhau:
\[t=\dfrac{s}{v_{1}+v_{2}}=\dfrac{12}{2+4}=2h\]
– Thời gian con chó chạy lại gặp người con lần thứ nhất là
\[t_{1}=\dfrac{s}{v_{1}+v_{3}}=\dfrac{12}{2+8}=1,2h\]
=> s1 = t1.v3 = 9,6km
– Thời gian con chó chạy lại gặp bố lần thứ nhất:
\[t_{2}=\dfrac{s_{1}-1,2.4}{v_{2}+v_{4}}=\dfrac{9,6-1,2.4}{4+12}=0,3h\]
– Quãng đường con chó đã chạy được là:
S2 = t2.v4 = 0,3.12 = 3,6 (km).
=>Vận tốc trung bình của con chó là:
\[v_{tb}=\dfrac{s_{1}+s_{2}}{t_{1}+t_{2}}=8,8km/h\]
Vận tốc trung bình của con chó không thay đổi trong suốt quá trình chạy =>
Quãng đường con chó chạy được:
s$_{c}$ = v$_{tb}$.t = 8,8.2= 17,6(km).

Bài tập 8. Ba người ở cùng một nơi và muốn có mặt tại một sân vận động cách đó 48km. Đường đi thẳng, họ có một chiếc xe đạp chỉ có thể chở thêm một người. Ba người giải quyết bằng cách hai người đi xe đạp khởi hành cùng lúc với người đi bộ, tới một vị trí thích hợp, người được chở bằng xe đạp xuống xe đi bộ tiếp, người đi xe đạp quay về gặp người đi bộ từ đầu và trở người này quay ngược trở lại. Ba người đến sân vận động cùng lúc.
a/ Vẽ đồ thị của các chuyển động. Coi các chuyển động là thẳng đều mà vận tốc có độ lớn không đổi là 12km/h cho xe đạp, 4km/h cho đi bộ.
b/ Tính sự phân bố thời gian và quãng đường.
5JP33Rx.jpg{5JP33Rx.jpg}

Bài tập 9: Trên đoạn đường thẳng dài, các ô tô đều chuyển động với vận tốc không đổi v1(m/s) cách nhau một khoảng 400m trên cầu chúng phải chạy với vận tốc không đổi v2 (m/s) và cách nhau 200m. Đồ thị bên biểu diễn sự phụ thuộc khoảng cách L giữa hai ô tô chạy kế tiếp nhau trong thời gian t. tìm các vận tốc v1; v2 và chiều dài của cầu.
34960124793_ee477e2c5e_o.jpg

Từ đồ thị ta thấy: trên đường, hai xe cách nhau 400m; trên cầu chúng cách nhau 200 m
Từ giây thứ 0 đến giây thứ 10 hai xe cách nhau 400m
Từ giây thứ 10 đồ thị hướng xuống đến giây thứ 30 khoảng cách giữa 2 xe là 200m
=> giây thứ 10 khi xe 1 lên cầu (v2) thì xe 2 đang trên đường (v1), đến giây thứ 30 khi xe 2 lên cầu
=> hai xe xuất phát cách nhau 20s
=> trên đường: v1.20 = 400 => v1 = 20 (m/s)
=> trên cầu: v2.20 = 200 => v2 = 10 (m/s)
Từ giây thứ 60 xe 1 bắt đầu dời cầu
=> thời gian xe 1 chuyển động (v2) trên cầu là: 60 – 10 = 50 (s)
=> Chiều dài của cầu là: s = v2.50 = 500 (m)

Bài tập 10: xe bus chuyển động thẳng đều trên đường với v1 = 16 m/s. một hành khách đứng cách đường một đoạn a = 60 m. người này nhìn thấy xe bus vào thời điểm xe cách người một khoảng b = 400 m. Hỏi người này chạy theo hướng nào để đến được đường cùng lúc hoặc trước khi xe bus đến. Biết rằng người ấy chuyển động với vận tốc đều là v2 = 4 m/s? Nếu muốn gặp xe với vận tốc nhỏ nhất thì người phải chạy theo hướng nào? tính vận tốc nhỏ nhất?
29098986255_bfa3dc0f13_o_d.jpg{29098986255_bfa3dc0f13_o_d.jpg}

a/ gọi C; D là vị trí người đó đến đường cùng lúc với xe bus.
AB = b = 400m; BH = a = 60m; AC = v1.t; BC = v2.t
=> \[\dfrac{AC}{v_{1}}=\dfrac{BC}{v_{2}}\] (1)
AC = AH – HC = \[\sqrt{b^{2}-a^{2}}-\sqrt{BC^{2}-a^{2}}\] (2)
từ (1) và (2) => BC = 84 (m); α1 = 36,9o
tương tự ta có BD = 126 (m); α2 = 143o
=> hướng của người này chạy để gặp xe bus: 36,9o ≤ α ≤ 143o
b/ Nếu muốn vận tốc là nhỏ nhất => quãng đường đi là nhỏ nhất => người đó đi theo hướng BH.
=> \[\dfrac{BH}{v_{min}}=\dfrac{AH}{v_{2}}\]
=> v$_{min}$ = 2,4 m/s

a/ gọi C; D là vị trí người đó đến đường cùng lúc với xe bus.AB = b = 400m; BH = a = 60m; AC = v.t; BC = v.t=> \[\dfrac{AC}{v_{1}}=\dfrac{BC}{v_{2}}\] (1)AC = AH – HC = \[\sqrt{b^{2}-a^{2}}-\sqrt{BC^{2}-a^{2}}\] (2)từ (1) và (2) => BC = 84 (m); α= 36,9tương tự ta có BD = 126 (m); α= 143=> hướng của người này chạy để gặp xe bus: 36,9≤ α ≤ 143b/ Nếu muốn vận tốc là nhỏ nhất => quãng đường đi là nhỏ nhất => người đó đi theo hướng BH.=> \[\dfrac{BH}{v_{min}}=\dfrac{AH}{v_{2}}\]=> v$_{min}$ = 2,4 m/s

Bài tập 11: Một ô tô chuyển động trên một quãng đường từ A đến B mất một khoảng thời gian t, vận tốc xe đi trong nửa khoảng thời gian đầu là 42km/h, vận tốc xe đi trong nửa khoảng thời gian cuối là 60km/h. Tình tốc độ trung bình của ô tô trên cả quãng đường

nửa thời gian đầu:
\[\dfrac{t}{2}=\dfrac{s_{1}}{v_{1}}=>s_{1}=v_{1}\dfrac{t}{2}\]
nửa thời gian sau:
\[\dfrac{t}{2}=\dfrac{s_{2}}{v_{2}}=>s_{2}=v_{2}\dfrac{t}{2}\]
vận tốc trung bình trên cả đoạn đường
\[v_{tb}=\dfrac{s_{1}+s_{2}}{t}\] = \[\dfrac{v_{1}+v_{2}}{2}\] = 51 km/h

Bài tập 12: Một vật chuyển động thẳng trên hai đoạn đường liên tiếp bằng nhau với vận tốc lần lượt là v1 và v2. Tính vận tốc trung bình trên cả đoạn đường? Xác định điều kiện để vận tốc trung bình bằng trung bình cộng của hai vận tốc.
29023064921_361385d5a2_o_d.jpg{29023064921_361385d5a2_o_d.jpg}

s1 = s2 = s
\[v_{tb} = \dfrac{s_{1} + s_{2}}{t_{1} + t_{2}} = \dfrac{2s}{\dfrac{s}{v_{1}} + \dfrac{s}{v_{2}}} = \dfrac{2v_{1}v_{2}}{v_{1} + v_{2}}\]
\[v_{tb} = \dfrac{s_{1} + s_{2}}{t_{1} + t_{2}} = \dfrac{v_{1} + v_{2}}{2}\]=>
\[\dfrac{s_{1}}{t_{1} + t_{2}} = \dfrac{v_{1}}{2}=\dfrac{s_{1}}{2t_{1}}\] (1)
\[\dfrac{s_{2}}{t_{1} + t_{2}} = \dfrac{v_{2}}{2}=\dfrac{s_{2}}{2t_{2}}\] (2)
từ (1) và (2) => t1 + t2 = 2t1 = 2t2 => t1 = t2

= s= s\[v_{tb} = \dfrac{s_{1} + s_{2}}{t_{1} + t_{2}} = \dfrac{2s}{\dfrac{s}{v_{1}} + \dfrac{s}{v_{2}}} = \dfrac{2v_{1}v_{2}}{v_{1} + v_{2}}\]\[v_{tb} = \dfrac{s_{1} + s_{2}}{t_{1} + t_{2}} = \dfrac{v_{1} + v_{2}}{2}\]=>\[\dfrac{s_{1}}{t_{1} + t_{2}} = \dfrac{v_{1}}{2}=\dfrac{s_{1}}{2t_{1}}\] (1)\[\dfrac{s_{2}}{t_{1} + t_{2}} = \dfrac{v_{2}}{2}=\dfrac{s_{2}}{2t_{2}}\] (2)từ (1) và (2) => t+ t= 2t= 2t=> t= t

Bài tập 13: Một ô tô chuyển động trên đoạn đường thẳng trong 1/2 quãng đg đầu đi với vận tốc 40 km/h, trong 1/2 quãng đg còn lại đi trong 1/2 thời gian đầu với vận tốc 75km/h và trong 1/2 thời gian cuối đi với vận tốc 45km/h. Tính tốc độ trung bình trên đoạn đường.
29100228675_b799331937_o_d.jpg{29100228675_b799331937_o_d.jpg}

t1 = \[\dfrac{\dfrac{s}{2}}{v_{1}}\]=\[\dfrac{s}{80}\]
\[\dfrac{t_{2}}{2}=\dfrac{s_{1}}{v_{2}}=\dfrac{s_{2}}{v_{3}}\]
=> 3s1 = 5s2;
mặt khác: s1 + s2 = s/2
=> s1 = 5s/16; s2 = 3s/16
=> \[ t _{2}=\dfrac{2s_{1}}{v_{2}}=\dfrac{5s }{8v_{2}}=\dfrac{s }{120}\]
v$_{tb}$ = \[\dfrac{s}{{{t_1} + {t_2}}} = \dfrac{s}{{\dfrac{s}{{80}} + \dfrac{s}{{120}}}} \]= 48m/s

= \[\dfrac{\dfrac{s}{2}}{v_{1}}\]=\[\dfrac{s}{80}\]\[\dfrac{t_{2}}{2}=\dfrac{s_{1}}{v_{2}}=\dfrac{s_{2}}{v_{3}}\]=> 3s= 5smặt khác: s+ s= s/2=> s= 5s/16; s= 3s/16=> \[ t _{2}=\dfrac{2s_{1}}{v_{2}}=\dfrac{5s }{8v_{2}}=\dfrac{s }{120}\]v$_{tb}$ = \[\dfrac{s}{{{t_1} + {t_2}}} = \dfrac{s}{{\dfrac{s}{{80}} + \dfrac{s}{{120}}}} \]= 48m/s

Bài tập 14: Hai chiếc tầu chuyển động thẳng đều với cùng vận tốc v hướng đến O theo quỹ đạo là những đường thẳng hợp với nhau góc 60o. Xác định khoảng cách nhỏ nhất giữa các tầu lúc đó chúng đã vượt qua O chưa. Cho biết ban đầu chúng cách O những khoảng 40km và 60 km.
29053213541_9407bb4921_o_d.png{29053213541_9407bb4921_o_d.png}

gọi CD là khoảng cách nhỏ nhất của hai tàu sau khi chuyển động được khoảng thời gian t
OC = OA – AC = 60 – v.t
OD = OB – BD = 40 – vt
CD2=OC2+OD2-2OC.OD.cos60o
CD2 = (60 – vt)2 + (40 – vt)2 – (60 – vt)(40-vt)
CD2 = (vt)$^{2 }$- 100vt + 2800 (tam thức có b = -100; Δ = -1200; a = 1)
(CD$_{min}$)2 = -Δ/4a = 300km => CD$_{min }$= 10√3 (km)
CD$_{min}$ khi vt = -b/2a = 50 km => 40 km => một tàu đã vượt qua O

gọi CD là khoảng cách nhỏ nhất của hai tàu sau khi chuyển động được khoảng thời gian tOC = OA – AC = 60 – v.tOD = OB – BD = 40 – vtCD=OC+OD-2OC.OD.cos60CD= (60 – vt)+ (40 – vt)- (60 – vt)(40-vt)CD= (vt)$^{2 }$- 100vt + 2800 (tam thức có b = -100; Δ = -1200; a = 1)(CD$_{min}$)= -Δ/4a = 300km => CD$_{min }$= 10√3 (km)CD$_{min}$ khi vt = -b/2a = 50 km => 40 km => một tàu đã vượt qua O

Bài tập 15: Lúc 6h xe thứ nhất đi từ A đến B với vận tốc 40km/h, sau khi đi được 45 phút tới C người đó dừng lại nghỉ 30 phút rồi tiếp tục đi đến B với vận tốc cũ. Lúc 6h30, xe thứ hai đi từ A đến B 50km/h. Biết AB dài 100km
a/ Lập phương trình chuyển động cho mỗi xe theo mỗi giai đoạn, chọn gốc thời gian là lúc 6h, gốc tọa độ tại A, chiều dương từ A đến B.
b/ Vẽ đồ thị tọa độ thời gian của hai xe. Từ đó hãy cho biết chúng có gặp nhau không? Khi nào và ở đâu? Kiểm tra lại bằng phép tính.
c/ Các xe đến B lúc mấy giờ?

a/ Phương trình chuyển động của xe 1 từ 6h đến 6h45:
x1 = 40t
Phương trình chuyển động của xe 1 từ 6h45 đến 7h15
x1 = 40.0,75 = 30
Phương trình chuyển động của xe 1 từ 7h15 trở đi
x1 = 30 + 40t
Phương trình chuyển động của xe 2:
x2 = 50(t – 0,5)
28524000774_66f420f3ff_o_d.jpg{28524000774_66f420f3ff_o_d.jpg}

b/ từ đồ thị => hai xe có gặp nhau
tọa độ gặp nhau x1 = 30 = x2 = 50(t – 0,5) => t = 1,1h = 1h6phút
=> hai xe gặp nhau lúc: 6h + 1h6phút = 7h6 phút tại điểm cách A 30km
c/ Thời gian 1 đến B: t1 = 100/40 + 0,5 = 3h => lúc xe 1 đến B là 9h
thời gian xe 2 đến B: t2 = 100/50 = 2h => lúc xe 2 đến B là 8h30

45phút = 0,75h; 30phút = 0,5ha/ Phương trình chuyển động của xe 1 từ 6h đến 6h45:= 40tPhương trình chuyển động của xe 1 từ 6h45 đến 7h15= 40.0,75 = 30Phương trình chuyển động của xe 1 từ 7h15 trở đi= 30 + 40tPhương trình chuyển động của xe 2:= 50(t – 0,5)b/ từ đồ thị => hai xe có gặp nhautọa độ gặp nhau x= 30 = x= 50(t – 0,5) => t = 1,1h = 1h6phút=> hai xe gặp nhau lúc: 6h + 1h6phút = 7h6 phút tại điểm cách A 30kmc/ Thời gian 1 đến B: t= 100/40 + 0,5 = 3h => lúc xe 1 đến B là 9hthời gian xe 2 đến B: t= 100/50 = 2h => lúc xe 2 đến B là 8h30

Bài tập 16: Một vật chuyển động thẳng trên trục Ox. Đồ thị chuyển động của nó được cho như hình vẽ
mulvaz4.jpg

a) Hãy mô tả chuyển động của vật.
b) Viết phương trình chuyển động của vật.
c) Tính quãng đường vật đi được sau 2 giờ.

từ đồ thị ta có:
Tại thời điểm t1 = 0 => x1 = -10km; t2 = 1h => x2 = 20km
=> s1 = AB = |x2 – x1| = 30km; thời gian: Δt$_{1 }$= t2 – t1 = 1h
=> vật chuyển động thẳng đều theo chiều dương từ A đến B với vận tốc
v1 = \[\dfrac{s_{1}}{\Delta t_{1}} = \dfrac{30}{1} = 30km/h\]
xAB = -10 + 30t với (0 ≤ t ≤ 1)
tại thời điểm t3 = 1,5h => x3 = 20km => s2 = |x3- x2| = 0km
=> vật dừng lại tại B trong khoảng thời gian Δt2 = t3 – t2 = 0,5h.
xBC = 20 với (1 < t ≤ 1,5)
Tại thời điểm t4= 2h => x4 = 0 => vật chuyển động thẳng đều ngược chiều dương quay lại D
s3 = |x4- x3| = 20km; Δt3 = t4 – t3 = 0,5h
=> vận tốc của vật: v2 = \[\dfrac{s_{3}}{\Delta t_{3}} = \dfrac{20}{0,5} = 40km/h\]
xCD = 20 – 40(t – 1,5) với (1,5 < t ≤ 2)
Quãng đường đi trong 2h: s = s1 + s2 + s3 = 50km

Bài tập 17: Giữa hai bến sông A và B cách nhau 20km theo đường thẳng có một đoàn cano phục vụ chở khách liên tục, chuyển động đều với vận tốc như sau: 20km/h khi xuôi dòng từ A đến B, và 10km/h khi ngược dòng từ B về A. Ở mỗi bến cứ cách 20 phút lại có một ca nô xuất phát, khi đến bến kia ca nô đó nghỉ 20 phút rồi quay về.
a/ Tính số ca nô cần thiết phục vụ cho đoạn sông đó;
b/ Một ca nô đi từ A đến B sẽ gặp trên đường bao nhiêu ca nô chạy ngược chiều, và khi đi từ B về A sẽ gặp bao nhiêu ca nô.
Giải toán bằng phương pháp đồ thị.

gốc thời gian là lúc một ca nô đi từ A đến B.
Các đồ thị biểu diễn chuyển động của các ca nô đi từ A đến B là các đoạn thẳng song song hướng lên và bằng OD, cách đều nhau 20 phút. Còn các đồ thị biểu diễn chuyển động của các ca nô đi từ B đến A là các đoạn thẳng song song hướng xuống và bằng EF, cũng cách đều nhau 20 phút.
35769662075_9ab85ce6b8_o.jpg{35769662075_9ab85ce6b8_o.jpg}

Thời gian ca nô đi từ A đến B: \[t_1=\dfrac{20}{20}=1h\];
còn thời gian ca nô đi từ B đến A:\[t_2=\dfrac{20}{10}=2h\]
a/ Cho đến khi chiếc ca nô đầu tiên từ A đến B và quay về (đoạn OF tính cả O và F) => số ca nô cần thiết là: N=11 ca nô.
b/ số ca nô gặp nhau khi đi và về (số giao điểm đối với một đường) = 8.

Chọn gốc tọa độ là bến A, chiều dương là chiều đi từ A đến B;gốc thời gian là lúc một ca nô đi từ A đến B.Các đồ thị biểu diễn chuyển động của các ca nô đi từ A đến B là các đoạn thẳng song song hướng lên và bằng OD, cách đều nhau 20 phút. Còn các đồ thị biểu diễn chuyển động của các ca nô đi từ B đến A là các đoạn thẳng song song hướng xuống và bằng EF, cũng cách đều nhau 20 phút.Thời gian ca nô đi từ A đến B: \[t_1=\dfrac{20}{20}=1h\];còn thời gian ca nô đi từ B đến A:\[t_2=\dfrac{20}{10}=2h\]a/ Cho đến khi chiếc ca nô đầu tiên từ A đến B và quay về (đoạn OF tính cả O và F) => số ca nô cần thiết là: N=11 ca nô.b/ số ca nô gặp nhau khi đi và về (số giao điểm đối với một đường) = 8.

Bài tập 18: lúc 8h có một người đi xe đạp vs vận tốc 12km/h gặp một người đi bộ ngược chiều vs vận tốc đều 4km/h trên cùng một đoạn đường thẳng . Tới 8h30′ người đi xe đạp dừng lại nghỉ 30′ rồi quay trở lại đuổi theo người đi bộ vs vận tốc có độ lớn như trước xác định thời gian và nơi người đi xe đạp đuổi kịp người đi bộ.

lúc 9h ((t1 = 9h – 8h – 30 phút nghỉ = 0,5h) người đi xe đạp đi được quãng đường
s1 = v1.t1 = 12 . 0,5 = 6km
lúc 9h (t2 = 9h-8h = 1h) quãng đường người đi bộ đi dược
s2 = v2.t2 = 4.1 = 4km
=> khoảng cách 2 xe lúc 9h: 6 + 4 = 10km
chọn gốc thời gian là lúc 9h, gốc tọa độ tại vị trí của người đi xe đạp, chiều dương là chiều chuyển động của xe đạp
x1 = 12t
x2 = 10 + 4t
hai xe gặp nhau: x1 = x2 => t = 1,25h
=> hai xe gặp nhau lúc: 9h + 1,25h = 10,25h = 10h15 phút
vị trí gặp nhau x = 1,25.12 = 15km (cách gốc đã chọn 15km)

Bài tập 19: Cho 3 vật chuyển động có đồ thị tọa độ thời gian như hình vẽ
28596736764_27483c8f1a_m_d.jpg

a/Tính tốc độ mỗi vật và nêu tính chất chyển động, lập phương trình chuyển động 3 xe
b/Xác định thời điểm và vị trí chúng gặp nhau

a/ vật I: chuyển động thẳng đều ngược chiều dương
tại t$_{1.I}$ = 0h; x$_{1.I}$ = 60km
tại t$_{2.I}$ = 5h; x$_{2.I }$ = 0
=> v$_{I}$ = \[\dfrac{|x_{2.I}-x_{1.I}|}{t_{2.I}-t_{1.I}}\] = 12km/h.
phương trình chuyển động của vật I: x$_{I}$ = 60 – 12t
Vật II: chuyển động thẳng đều cùng chiều dương
tại t$_{1.II}$ = 0h; x$_{1.II}$ = 20 (km)
tại t$_{2.II}$ = 2h; x$_{2.II}$ = 60 (km)
=> v$_{II}$ = \[\dfrac{|x_{2.II}-x_{1.II}|}{t_{2.II}-t_{1.II}}\] = 20km/h.
phương trình chuyển động của vật II: x$_{II}$ = 20 + 20t
Vật III: chuyển động thẳng đều cùng chiều dương
tại t$_{1.III}$ = 1h; x$_{1.III}$ = 20 (km)
tại t$_{2.III}$ = 3h; x$_{2.III}$ = 60 (km)
=> v$_{III}$ = \[\dfrac{|x_{2.III}-x_{1.III}|}{t_{2.III}-t_{1.III}}\] = 20km/h.
phương trình chuyển động của vật III: x$_{III}$ = 20 + 20(t-1)
b/ thời điểm gặp nhau của xe I và xe II:
x$_{I}$ = x$_{II}$ => 60 – 12t = 20 + 20t => t = 1,25h
thời điểm gặp nhau của xe I và xe III:
x$_{I}$ = x$_{III}$ => 60 – 12t = 20 + 20(t-1) => t = 1,875h

Bài tập 20: Hai xe cách nhau một khoảng s, xuất phát cùng lúc và chuyển động thẳng đều với vận tốc lần lượt là v1 và v2. Trong cùng 1 khoảng thời gian 30 phút, nếu hai xe đi ngược chiều thì khoảng cách giảm đi 25km, nếu hai xe đi cùng chiều thì khoảng cách giảm đi 5km. Tính v1, v2 ( v1> v2)

30phút = 0,5h
2 xe chuyển động ngược chiều: 0,5v1 + 0,5v2 = 25
2 xe chuyển động cùng chiều: 0,5v1 – 0,5v2 = 5
từ (1) và (2) => v1 = 30 km/h; v2 = 20km/h

Bài tập 21: 2 xe đi theo 2 con đường vuông góc. xe 1 từ đông sang tây vs vận tốc 50 km/h. xe 2 chạy từ bắc xuống nam vs vận tốc 30 km/h. lúc 8h sáng xe 1 và 2 còn cách ngã tư lần lượt là 4,4 km và 4 km. thời điểm mà khoảng cách 2 xe nhỏ nhất là bao nhiêu?
29155286291_f136b06e34_o_d.jpg{29155286291_f136b06e34_o_d.jpg}

chọn gốc thời gian là lúc 8h. Tại thời điểm t xe 2 chuyển động đến C, xe 1 chuyển động đến D
OD = OA – AD = 4,4 – v1.t = 4,4 – 50t
OC = OB – BC = 4 – v2.t = 4 – 30t
khoảng cách giữa hai xe
CD2 = OC2 + OD2 = (4 – 30t)2 + (4,4 – 50t)2 =3400t2 – 680t + 35,36
(tam thức có: a = 3400; b = -680; c = 35,36 => Δ =-18496)
=> CD2$_{min}$ => t = -b/2a = 0,1(h) = 6phút => thời điểm: 8h6phút

chọn gốc thời gian là lúc 8h. Tại thời điểm t xe 2 chuyển động đến C, xe 1 chuyển động đến DOD = OA – AD = 4,4 – v.t = 4,4 – 50tOC = OB – BC = 4 – v.t = 4 – 30tkhoảng cách giữa hai xeCD= OC+ OD= (4 – 30t)+ (4,4 – 50t)=3400t- 680t + 35,36(tam thức có: a = 3400; b = -680; c = 35,36 => Δ =-18496)=> CD$_{min}$ => t = -b/2a = 0,1(h) = 6phút => thời điểm: 8h6phút

Bài tập 22: Lúc 5h hai vật cùng xuất phát từ hai điểm A, B chuyển động thẳng đều trên hai đường thẳng vuông góc hướng về C với nhau với tốc độ lần lượt là 8km/h và 5km/h. AC = 30km; BC=20km.
a/ Tìm khoảng cách giữa hai vật ở thời điểm 6h
b/ Tìm thời điểm hai vật gặp nhau
c/ Tìm thời điểm khi hai vật cách nhau 30km
d/ Tìm thời điểm khi khoảng cách giữa hai vật là nhỏ nhất.
29227897703_50ac11c55b_o_d.jpg{29227897703_50ac11c55b_o_d.jpg}

a/ Chọn gốc thời gian là lúc 5h => lúc 6h: t = 6h -5h = 1h
EC = AC – AE = AC – v1.t = 30 – 8.1 = 22km
FC = BC – BF = BC – v2.t = 20 – 5.1 = 15km
khoảng cách giữa hai vật: \[EF = \sqrt{EC^{2}+FC^{2}}\]
b/ Hai vật chỉ có thể gặp nhau tại C:
Thời gian vật 1 về đến C: t1 = AC/v1
Thời gian vật 2 về đến C: t2 = BC/v2
t1 = t2 thì hai vật mới gặp được nhau => thời điểm gặp nhau t = t1 + 5h
c/ EF2 = EC2 + FC2 = (30 – 8t)2 + (20 – 5t)2 = 302
giải phương trình trên => thời điểm 2 vật cách nhau 30m
d/ EF2 = (30 – 8t)2 + (20 – 5t)$^{2 }$ = 89t2 – 680t + 1300
xét tam thức a = 89; b = -680; c = 1300
EF$_{min}$ tại t = -b/2a = 3,82h => thời điểm khoảng cách hai vật nhỏ nhất là 8,82h

a/ Chọn gốc thời gian là lúc 5h => lúc 6h: t = 6h -5h = 1hEC = AC – AE = AC – v.t = 30 – 8.1 = 22kmFC = BC – BF = BC – v.t = 20 – 5.1 = 15kmkhoảng cách giữa hai vật: \[EF = \sqrt{EC^{2}+FC^{2}}\]b/ Hai vật chỉ có thể gặp nhau tại C:Thời gian vật 1 về đến C: t= AC/vThời gian vật 2 về đến C: t= BC/v= tthì hai vật mới gặp được nhau => thời điểm gặp nhau t = t+ 5hc/ EF= EC+ FC= (30 – 8t)+ (20 – 5t)= 30giải phương trình trên => thời điểm 2 vật cách nhau 30md/ EF= (30 – 8t)+ (20 – 5t)$^{2 }$ = 89t– 680t + 1300xét tam thức a = 89; b = -680; c = 1300EF$_{min}$ tại t = -b/2a = 3,82h => thời điểm khoảng cách hai vật nhỏ nhất là 8,82h

Bài tập 23. Có ba con sên đang nằm trên ba đỉnh của một tam giác đều cạnh 60cm. Cùng một lúc 3 con khởi hành, con thứ nhất đi hướng về con thứ hai, con thứ hai hướng về con thứ ba, con thứ ba hướng về con thứ nhất, với cùng một tốc độ không đổi 5cm/phút. Trong suốt cuộc hành trình, mỗi con luôn chuyển động về phía con đích đến tương ứng. Phải mất bao lâu và quãng đường mà mỗi con đi được cho đến lúc chúng gặp nhau ?

30861151105_86a033cc24_o_d.gif{30861151105_86a033cc24_o_d.gif}

Do tính chất bình đẳng của 3 con nên trong quá trình chuyển động chúng đều nằm trên đỉnh của các tam giác đều đồng tâm. Do đó thành phần vận tốc hướng vào tâm của tam giác là không đổi
v$_{ht}$ = vcos30o
quãng đường hướng vào tâm bằng khoảng cách từ đỉnh đến tâm s = a/√3
=> thời gian đi t = s/v$_{ht}$ = 2a/3

Hình minh họa chuyển động của các con ốc sênDo tính chất bình đẳng của 3 con nên trong quá trình chuyển động chúng đều nằm trên đỉnh của các tam giác đều đồng tâm. Do đó thành phần vận tốc hướng vào tâm của tam giác là không đổiv$_{ht}$ = vcos30quãng đường hướng vào tâm bằng khoảng cách từ đỉnh đến tâm s = a/√3=> thời gian đi t = s/v$_{ht}$ = 2a/3

Bài tập 24. Hai tàu A và B cách nhau một khoảng cách a đồng thời chuyển động thẳng đều với vận tốc lớn v của vận tốc từ hai nơi trên một bờ hồ thẳng. Tàu A chuyển động theo hướng vuông góc với bờ trong khi tàu B luôn luôn hướng về tàu A. Sau một thời gian đủ lâu, tàu B và tàu A chuyển động trên cùng một đường thẳng nhưng cách nhau một khoảng không đổi. Tính khoảng cách này.
30227276884_c349a58766_o.jpg{30227276884_c349a58766_o.jpg}

Theo phương CA: tàu B tiến lại gần tàu A với tốc độ vcosx
Theo phương BA: tàu A đi xa tàu B với tốc độ vcosx
= > Trong cùng một khoảng thời gian rất nhỏ. Tàu B tiến lại gần A theo phương AC một đoạn bao nhiêu thì tàu A lại rời xa tàu B theo phương AB 1 đoạn bấy nhiêu
=> tổng khoảng cách AB+AC là không đổi
Ban đầu AB + AC = a (1)
Sau một khoảng thời gian đủ lâu thì 2 tàu cùng nằm trên đường AC, khi đó AB = AC (2)
từ (1) và (2) => AB = AC = a/2

Theo phương CA: tàu B tiến lại gần tàu A với tốc độ vcosxTheo phương BA: tàu A đi xa tàu B với tốc độ vcosx= > Trong cùng một khoảng thời gian rất nhỏ. Tàu B tiến lại gần A theo phương AC một đoạn bao nhiêu thì tàu A lại rời xa tàu B theo phương AB 1 đoạn bấy nhiêu=> tổng khoảng cách AB+AC là không đổiBan đầu AB + AC = a (1)Sau một khoảng thời gian đủ lâu thì 2 tàu cùng nằm trên đường AC, khi đó AB = AC (2)từ (1) và (2) => AB = AC = a/2

Bài tập 25. Năm 1946 người ta đo khoảng cách giữa Trái Đất – Mặt trăng bằng kỹ thuật phản xạ rada. Tín hiệu rada phát đi từ Trái đất truyền với vận tốc c = 3.108m/s phản xạ trên bề mặt của mặt trăng và trở lại trái đất. Tín hiệu phản xạ ghi nhận được sau 2,5s kể từ lúc truyền. Coi trái đất và mặt trăng có dạng hình cầu bán kính lần lượt R$_{đ}$= 6400km; R$_{t}$= 1740km. Tính khoảng cách d giữa hai tâm.
Lr2ufDT.jpg{Lr2ufDT.jpg}

Bài tập 26. Một ca nô rời bến chuyển động thẳng đều. Thoạt tiên , ca nô chạy theo hướng nam bắc trong thời gian 2phút 40 giây rồi tức thì rẽ sang hướng đông tây và chạy thêm 2 phút với vận tốc như trước và dừng lại. Khoảng cách từ nơi xuất phát tới nơi dừng lại là 1km. Tính vận tốc của cano.
1aA1vZT.jpg{1aA1vZT.jpg}

Bài tập 27. Một người đứng tại A trên một bờ hồ. Người này muốn tới B trên mặt hồ nhanh nhất. Cho các khoảng cách như trên hình vẽ.
35391490060_938de73eb2_o.jpg

Biết rằng người này có thể chạy dọc theo bờ hồ với vận tốc v2 và bơi thẳng với vận tốc v1. Hãy xác định cách mà người này phải theo
– hoặc bơi thẳng từ A đến B
– hoặc chạy dọc theo bờ hồ một đoạn rồi sau đó bơi thẳng tới B.
Biết vận tốc chạy dọc theo bờ hồ luôn lớn hơn vận tốc khi bơi (v1 < v2)
35648153721_08a72491d9_o.jpg{35648153721_08a72491d9_o.jpg}

Bài tập 28. Một xe khởi hành từ A lúc 9h về B theo hướng chuyển động thẳng với vận tốc 36km/h. Nửa giờ sau, một xe đi từ B về A với vận tốc 54km/h. Cho AB = 108km. Xác định thời điểm, vị trí gặp nhau của hai xe.
G7jXo0Q.jpg{G7jXo0Q.jpg}

Bài tập 29. Lúc 7h có một xe khởi hành từ A chuyển động về B theo chuyển động thẳng đều với vận tốc 40km/h. Lúc 7h30 phút một xe khác khởi hành từ B về A theo chuyển động thẳng đều với vận tốc 50km/h. Cho AB = 110km.
a/ Xác định vị trí của mỗi xe và khoảng cách giữa chúng lúc 8h và lúc 9h
b/ Hai xe gặp nhau lúc mấy giờ ở đâu.
6pcv0UF.jpg{6pcv0UF.jpg}

Bài tập 30. Hai vật bắt đầu chuyển động đồng thời từ A đến C vật (1) đi từ A đến B rồi mới tới C, vật (2) đi thẳng từ A đến C. Ở một thời điểm bất kì, hai vật luôn nằm trên đường thẳng góc AC. Tìm vận tốc trung bình của vật (1) cho góc A = 30o; v2 = 6m/s
SO3wU4x.jpg

lyhjF2K.jpg{lyhjF2K.jpg}

Bài tập 31. Chuyển động của ba xe (1); (2); (3) có đồ thị tọa độ – thời gian như hình bên (x tính bằng km, t tình bằng h)
a/ Nêu đặc điểm chuyển động của mỗi xe
b/ Lập phương trình chuyển động của mỗi xe
c/ Xác định vị trí, thời điểm gặp nhau bằng đồ thị. Kiểm tra lại bằng phép tính
2mPa41S.jpg

PrmsRAY.jpg{PrmsRAY.jpg}

Bài tập 32. Giữa hai bến sông A, B có hai tàu chuyển động thẳng đều. Tàu A xuôi dòng, tàu B ngược dòng. Khi gặp nhau và chuyển thư, mỗi tàu tức thì trở lại bến xuất phát. Nếu khởi hành cùng lúc thì tàu A đi và về mất 3h, tàu B đi và về mất 1h30. Hỏi nếu thời gian đi và về của hai tàu bằng nhau thì tàu từ A phải khởi hành trễ hơn tàu từ B bao lâu cho biết
– Vận tốc mỗi tàu đối với nước như nhau và không đổi lúc đi và về.
– Khi xuôi dòng, vận tốc dòng nước làm tàu chạy nhanh hơn, khi ngược dòng vận tốc dòng nước làm tàu chạy chậm hơn.
a/ Giải bài toán bằng đồ thị
b/ Giải bài toán bằng phương trình.
35400771750_109f31eaa1_o.jpg{35400771750_109f31eaa1_o.jpg}

b/
Thời gian đi và về của tàu A: t1 + t’1 = 3h
thời gian đi và về của tàu B: t2 + t’2 = 1,5h
=> t1 + t2 + t’$_{1 }$+ t’2 = 4,5h
hai tầu xuất phát cùng lúc => t1 = t’2 => t1 + t2 = 1,5h => t’1 + t’2 = 3h
=> nếu chạy xuôi dòng thì thời gian đi A → B là 1,5h; nếu chạy ngược dòng thì thời gian đi từ B → A là 3h
Để thời gian đi và về là như nhau => hai tàu phải gặp nhau ở điểm chính giữa
=> thời gian tàu A xuôi dòng đến điểm chính giữa: Δt1 = 1,5/2 = 0,75h
=> thời gian tàu B xuôi dòng đến điểm chính giữa: Δt2 = 3/2 = 1,5h
=> thời gian tàu A xuất phát chậm: Δt = 1,5 – 0,75 = 0,75h = 45 phút

b/Thời gian đi và về của tàu A: t+ t’= 3hthời gian đi và về của tàu B: t+ t’= 1,5h=> t+ t+ t’$_{1 }$+ t’= 4,5hhai tầu xuất phát cùng lúc => t= t’=> t+ t= 1,5h => t’+ t’= 3h=> nếu chạy xuôi dòng thì thời gian đi A → B là 1,5h; nếu chạy ngược dòng thì thời gian đi từ B → A là 3hĐể thời gian đi và về là như nhau => hai tàu phải gặp nhau ở điểm chính giữa=> thời gian tàu A xuôi dòng đến điểm chính giữa: Δt= 1,5/2 = 0,75h=> thời gian tàu B xuôi dòng đến điểm chính giữa: Δt= 3/2 = 1,5h=> thời gian tàu A xuất phát chậm: Δt = 1,5 – 0,75 = 0,75h = 45 phút

Bài tập 33. Hàng ngày một xe hơi từ nhà máy tới đón kỹ sư tại trạm đến nhà máy làm việc. Một hôm, viên kỹ sư tới trạm sớm hơn 1h nên anh đi bộ hướng về nhà máy. Dọc đường anh ta gặp chiếc xe tới đón mình và cả hai tới nhà máy sơm hơn bình thường 10 phút. Coi chuyển động là thẳng đều có độ lớn vận tốc nhất định. Tính thời gian kỹ sư đã đi bộ từ trạm tới khi gặp xe.
yvaWTjI.jpg{yvaWTjI.jpg}

Bài tập 34. Hai học sinh đi cắm trại. Nơi xuất phát cách nơi cắm trại 40km. Họ có một chiếc xe đạp chỉ dùng được cho một người và họ sắp xếp như sau: Hai người khởi hành cùng lúc, một đi bộ với vận tốc không đổi v1 = 5km/h một đi xe đạp với vận tốc không đổi v2 = 15km/h. Tới một địa điểm thích hợp, người đang đi xe đạp bỏ xe và đi bộ. Khi người kia tới nơi thì lấy xe đạp sử dụng. Vận tốc đi bộ và đi xe đạp vẫn như trước. Hai người đến nơi cùng lúc.
a/ Tính vận tốc trung bình của mỗi người.
b/ Xe đạp không được sử dụng trong thời gian bao lâu.
GU2s8MW.jpg{GU2s8MW.jpg}

Bài tập 35. Một người đi từ A đến B theo chuyển động thẳng. Nửa đoạn đường đầu người ấy đi với vận tốc trung bình 16km/h. Trong nửa đoạn đường còn lại, người ấy đi một nửa thời gian với vận tốc 10km/h và sau đi bộ với vận tốc 4km/h. Tính vận tốc trung bình trên cả đoạn đường.
1Zn0HNn.jpg{1Zn0HNn.jpg}

Bài tập 36. Hai ô tô khởi hành đồng thời từ A và chuyển động thẳng đều về B cách A khoảng l. Ô tô I đi nửa quãng đường đầu với vận tốc v1 và nửa quãng đường sau với vận tốc v2. Ô tô II đi với vận tốc v1 trong nửa thời gian sau. Hỏi ô tô nào tới nơi trước và trước một thời gian bao lâu.
CLaDqUM.jpg{CLaDqUM.jpg}

Bài tập 37. Lúc 6h30 khi thắng vừa rời nhà đi xe đạp đến trường học thì mẹ thắng cũng rời nhà đi bộ đến cơ quan (nằm trên đg từ nhà đến trường học). Giữa chừng thắng chợt nhớ là chưa xin chữ kí vào sổ liên lạc liền quay lại và gặp mẹ lấy chữ kí rồi đến trường vừa đúng 7h. Khoảng cách từ nhà đến trường là 3.6km. Thắng nhận thấy là thời gian đi từ nhà đến lúc quay lại đúng bằng thời gian từ lúc gặp mẹ đến khi đến trường. Biết tốc độ đi bộ của mẹ là 4km/h, còn tốc độ đạp xe của thắng khôngg đổi. Bỏ qua thời gian dừng lại lấy chữ kí và quay xe Tìm tốc độ xe đạp của thắng.

vận tốc xe đạp là v; vận tốc mẹ đi v1 = 4km/h
tổng thời gian đi của xe đạp: t = 7h – 6h30 = 30phút = 0,5h
2017-08-13_151709.jpg{2017-08-13_151709.jpg}

C là vị trí quay lại, B là vị trí gặp mẹ, thời gian từ A → C = thời gian từ B → D =>
AC = BD => AB + BC = BC + CD => AB = CD => 2AB + BC = s (1)
gọi t’ là thời gian quay lại => AB/v1 = BC/v => AB = 4BC/v (2)
từ (1) và (2) => 4BC/v + BC = s => BC = s ÷ (4/v + 1)
tổng quãng đường xe đạp đi: ℓ = AC + BC + BD = AB + BC + BC + BC + CD = 2BC + s = 2s ÷ (4/v + 1) + s
=> ℓ / v = 0,5 => 2s ÷ (4/v + 1) + s = 0,5v => v = 19 km/h

Gọi quãng đường từ nhà đến trường là s = AD = AB + BC + CD;vận tốc xe đạp là v; vận tốc mẹ đi v= 4km/htổng thời gian đi của xe đạp: t = 7h – 6h30 = 30phút = 0,5hC là vị trí quay lại, B là vị trí gặp mẹ, thời gian từ A → C = thời gian từ B → D =>AC = BD => AB + BC = BC + CD => AB = CD => 2AB + BC = s (1)gọi t’ là thời gian quay lại => AB/v= BC/v => AB = 4BC/v (2)từ (1) và (2) => 4BC/v + BC = s => BC = s ÷ (4/v + 1)tổng quãng đường xe đạp đi: ℓ = AC + BC + BD = AB + BC + BC + BC + CD = 2BC + s = 2s ÷ (4/v + 1) + s=> ℓ / v = 0,5 => 2s ÷ (4/v + 1) + s = 0,5v => v = 19 km/h

Bài tập 38. Một thanh cứng, mảnh AB có chiều dài ℓ = 2m dựng đứng sát bức tường thẳng đứng (hình vẽ).
2017-08-23_213611.jpg

Ở đầu A của thanh có một con kiến. Khi đầu A của thanh bắt đầu chuyển động trên sàn ngang về bên phải theo phương vuông góc với bức tường thì con kiến cũng bắt đầu bò dọc theo thanh. Đầu A chuyển động thẳng đều với vận tốc v1 = 0,5 cm/s so với sàn kể từ vị trí tiếp xúc với bức tường. Con kiến bò thẳng đều với vận tốc v2 = 0,2 cm/s so với thanh kể từ đầu A. Tìm độ cao cực đại của con kiến đối với sàn ngang. Biết rằng đầu b của thanh luôn tiếp xúc với tường thẳng đúng.
2017-08-23_213544.jpg{2017-08-23_213544.jpg}

vật lý phổ thông