1.1 Electric Charge – Introduction to Electricity, Magnetism, and Circuits

You are certainly familiar with electronic devices that you activate with the click of a switch, from computers to cell phones to television. And you have certainly seen electricity in a flash of lightning during a heavy thunderstorm. But you have also most likely experienced electrical effects in other ways, maybe without realizing that an electric force was involved. Let’s take a look at some of these activities and see what we can learn from them about electric charges and forces.

Discoveries

You have probably experienced the phenomenon of static electricity: When you first take clothes out of a dryer, many (not all) of them tend to stick together; for some fabrics, they can be very difficult to separate. Another example occurs if you take a woolen sweater off quickly—you can feel (and hear) the static electricity pulling on your clothes, and perhaps even your hair. If you comb your hair on a dry day and then put the comb close to a thin stream of water coming out of a faucet, you will find that the water stream bends toward (is attracted to) the comb (Figure 1.1.1).

(Figure 1.1.1)   \begin{gather*}.\end{gather*}

A photograph of a stream of water bending sideways as it is attracted to a comb.

Suppose you bring the comb close to some small strips of paper; the strips of paper are attracted to the comb and even cling to it (Figure 1.1.2). In the kitchen, quickly pull a length of plastic cling wrap off the roll; it will tend to cling to most any nonmetallic material (such as plastic, glass, or food). If you rub a balloon on a wall for a few seconds, it will stick to the wall. Probably the most annoying effect of static electricity is getting shocked by a doorknob (or a friend) after shuffling your feet on some types of carpeting.

(Figure 1.1.2)   \begin{gather*}.\end{gather*}

A photograph of thin strips of paper stuck to a plastic comb.

Many of these phenomena have been known for centuries. The ancient Greek philosopher Thales of Miletus (624–546 BCE) recorded that when amber (a hard, translucent, fossilized resin from extinct trees) was vigorously rubbed with a piece of fur, a force was created that caused the fur and the amber to be attracted to each other (Figure 1.1.3). Additionally, he found that the rubbed amber would not only attract the fur, and the fur attract the amber, but they both could affect other (nonmetallic) objects, even if not in contact with those objects (Figure 1.1.4).

(Figure 1.1.3)   \begin{gather*}.\end{gather*}

A photograph of a piece of gold-colored amber from Malaysia that has been rubbed and polished to a smooth, rounded shape.

(Figure 1.1.4)   \begin{gather*}.\end{gather*}

Figure a shows a piece of amber and a piece of cloth. The amber has two negative charges and two positive charges, while the cloth has three of each. In figure B, two arrows are shown going through the amber, and another two arrows coming out of the amber. In figure C, the amber now has two positive charges and four negative charges, while the cloth has three positive charges and only one remaining negative charge.

The English physicist William Gilbert (1544–1603) also studied this attractive force, using various substances. He worked with amber, and, in addition, he experimented with rock crystal and various precious and semi-precious gemstones. He also experimented with several metals. He found that the metals never exhibited this force, whereas the minerals did. Moreover, although an electrified amber rod would attract a piece of fur, it would repel another electrified amber rod; similarly, two electrified pieces of fur would repel each other.

This suggested there were two types of an electric property; this property eventually came to be called electric charge. The difference between the two types of electric charge is in the directions of the electric forces that each type of charge causes: These forces are repulsive when the same type of charge exists on two interacting objects and attractive when the charges are of opposite types. The SI unit of electric charge is the coulomb (C), after the French physicist Charles Augustine de Coulomb (1736–1806).

The most peculiar aspect of this new force is that it does not require physical contact between the two objects in order to cause an acceleration. This is an example of a so-called “long-range” force. (Or, as Albert Einstein later phrased it, “action at a distance.”) With the exception of gravity, all other forces we have discussed so far act only when the two interacting objects actually touch.

The American physicist and statesman Benjamin Franklin found that he could concentrate charge in a “Leyden jar,” which was essentially a glass jar with two sheets of metal foil, one inside and one outside, with the glass between them (Figure 1.1.5). This created a large electric force between the two foil sheets.

(Figure 1.1.5)   \begin{gather*}.\end{gather*}

This figure is an illustration of a Leyden Jar. A layer of tin foil is wrapped around the outside and the inside surfaces of a glass jar. A wire is attached to the inner foil and connected to a metal rod that extends out through a stopper at the top of the jar. The inner foil is marked as having positive charge and the outer as having negative charge.

Franklin pointed out that the observed behavior could be explained by supposing that one of the two types of charge remained motionless, while the other type of charge flowed from one piece of foil to the other. He further suggested that an excess of what he called this “electrical fluid” be called “positive electricity” and the deficiency of it be called “negative electricity.” His suggestion, with some minor modifications, is the model we use today. (With the experiments that he was able to do, this was a pure guess; he had no way of actually determining the sign of the moving charge. Unfortunately, he guessed wrong; we now know that the charges that flow are the ones Franklin labeled negative, and the positive charges remain largely motionless. Fortunately, as we’ll see, it makes no practical or theoretical difference which choice we make, as long as we stay consistent with our choice.)

Let’s list the specific observations that we have of this electric force:

  • The force acts without physical contact between the two objects.
  • The force can be either attractive or repulsive: If two interacting objects carry the same sign of charge, the force is repulsive; if the charges are of opposite sign, the force is attractive. These interactions are referred to as electrostatic repulsion and electrostatic attraction, respectively.
  • Not all objects are affected by this force.
  • The magnitude of the force decreases (rapidly) with increasing separation distance between the objects.

To be more precise, we find experimentally that the magnitude of the force decreases as the square of the distance between the two interacting objects increases. Thus, for example, when the distance between two interacting objects is doubled, the force between them decreases to one fourth what it was in the original system. We can also observe that the surroundings of the charged objects affect the magnitude of the force. However, we will explore this issue in a later chapter.