Program: Industrial Engineering, BSIE – Purdue University – Acalog ACMS™
About the Program
Industrial engineers design, analyze, and manage complex human-integrated systems such as manufacturing systems, supply chain networks, and service systems. These systems typically consist of a combination of people, information, material, and equipment. In such systems industrial engineers determine how to optimize the system for maximum efficiency, effectiveness, throughput, safety, or some other objective of interest to the stakeholders of the system. To achieve these objectives, an industrial engineer draws upon knowledge of mathematics, along with physical, engineering, management, and behavioral sciences to function as a problem-solver, innovator, designer, coordinator, and system integrator. Industrial engineers are employed in and apply their skills in an extremely wide range of organizations, including manufacturing industries, service industries, and governmental agencies.
The complexity of these organizations and the emphasis on increased effectiveness, efficiency, and productivity have led to a growing need for industrial engineering analysis and design, resulting in an increased demand for industrial engineering graduates. This increased demand recognizes the modern industrial engineer’s versatility and responsiveness to the challenges of a rapidly changing society. Industrial engineering is one of the nation’s largest and most rapidly growing engineering professions.
The industrial engineering program prepares graduates for careers in all phases of industrial engineering and enables them to perform both technical and managerial functions that require scientific and engineering backgrounds. By combining the study of science, mathematics, engineering fundamentals, design, and management principles, an industrial engineering education provides a unique background and a sound basis for lifelong career development in engineering practice, research, or management.
Senior design projects consist of a real-world application of IE principles by teaming students with a local industry in Indiana. Teams have taken on full-scale projects like designing floor layouts for factories and hospitals, designing operations to improve system efficiency, reducing time and waste in processing, allocating resources to optimize system performance, and developing a safety plan for preventing work-related injuries.
The undergraduate program in industrial engineering is accredited by the Engineering Accreditation Commission of ABET, http://www.abet.org.
Industrial Engineering Major Change (CODO) Requirements